0

Закон Паскаля и гидравлические машины

Самым простым примером гидравлической машины, который можно встретить повсеместно — это гидравлические тормоза. Тормозная система — это одна из самых важных систем в современном транспортном средстве. Она обеспечивает безопасность движения и делает возможным как таковое управлением.

Для реализации преимущества гидравлических тормозов, а именно — усиления нажатия, используется закон Паскаля. Давайте выясним, как используется закон Паскаля в гидравлических машинах на примере гидравлических тормозов.

Как вообще работают тормоза?

Как обычно работают любые тормоза и на каком физическом принципе всё это держится?

Всё довольно просто. Представьте себе, что катите по ровному полу тележку с колёсами, она прекрасно катится, т.к. на колёса воздействует только сила трения качения. А теперь представьте, что катите по тому же самому полу деревянный ящик без колёс. Заметили разницу? 🙂

Всё верно, ящик сдвинуть очень тяжело, даже при условии, что масса обоих объектов (тележки и ящика) будет одинаковая. Ящик, в момент попытки его столкнуть, воздействует сила трения покоя, которая многократно превышает силу трения качения.

Отсюда напрашивается вывод: Для того, чтобы тело затормозило, будь-то велосипед или автомобиль, нужно превратить его из тележки в ящик без колёс.

Как же это сделать? Нужно просто зафиксировать колёса в какой-то момент времени (и желательно все одновременно, в случае автомобиля).

На эту функцию выполняют тормоза. У колеса есть ротор ( или само колесо работает как ротор), а на неподвижной части велосипеда или автомобиля устанавливается тормозной суппорт или тормозная машинка.

В тормозной машинке есть подвижные колодки и когда водитель нажмет на тормоза, колодки прикоснутся к вращающемуся колесу или ротору. Колёса будут обездвижены и цель будет достигнута.

Типы приводов тормозов

Для того, чтобы сдвинуть колодки, нужно как-то соединить эти колодки с педалью или ручкой управления. По сути дела, нужно передать нажатие водителя на суппорт на некоторое расстояние.

Для решения этой задачи используют несколько способов.

Существуют гидравлические тормоза или механические тормоза. Все они, в первую очередь, отличаются «способом нажатия» на тормозную колодку. Вариантов, на самом деле, больше. Например, есть ещё и пневматические тормоза. Но используется чаще всего именно перечисленные типы.

В механических тормозах используется самый обычный тросик, который сдвигает колодки, пока мы давим на ручку. Этот вариант используется в велосипедах и может быть применен как к ободным, так и к дисковым тормозам. В автомобиле такой тип тормозов используется для реализации стояночного тормоза или ручника. Здесь всё очень просто — самый обычный тросик, аналогично веревке, тянет объект и передает наше усилие на суппорт.

В гидравлических тормозах, вместо тросика, используется жидкость. Жидкость заполняет т.н. гидролинию, которая и является аналогом механического троса и выполняет его функцию. Правда работает система на сжатие а не на растяжение.

Напомню, что жидкость всегда несжимаемая! Чуть позже мы узнаем, что это даёт гидравлике ощутимое преимущество перед механикой.

При нажатии на ручку или педаль, жидкость перемещается по гидролинии и надавливает на тормозной поршень в суппорте. Само собой, вся система адаптирована на использование именно гидравлического привода.

Особенности конструкции гидравлических тормозов

Если в механике мы использовали обычные механические соединения и передачи, то тут всё гидравлическое. Как водяной пистолетик, родом из вашего детства.

Начнем с того, что гидравлическая система всегда замкнутая и не должна течь. В противном случае тормоза попросту откажут.

Теперь рассмотрим простейшую принципиальную схему гидравлических тормозов на примере велосипедных гидравлических тормозов.

Система состоит из тормозной ручки, в которой спрятан поршень и расположен расширительный бачок, гидролинии, по которой перемещается жидкость и тормозного суппорта, в котором расположены цилиндры, осуществляющие нажатие на тормозные колодки.

Распишем логику работы гидравлического тормоза велосипеда

Пользователь нажимает на тормозную ручку, она приводит в действие главной тормозной цилиндр, который спрятан в ручке.

Под действием механического нажатия цилиндр начинает передвигаться и толкает тормозную жидкость по гидросистеме вперёд, аналогично жидкости в шприце.

Жидкость не сжимается и передает усилие нажатия от поршня на тормозной ручке поршню на тормозном суппорте.

Как правило, на суппорте установлено сразу два подвижных поршня, чтобы нажатие получилось равномерным и колодки прижимались к диску с обеих сторон. По закону паскаля жидкость равномерно распространяет нажатие сразу по всем направлениям. Т.е. оба поршня прижимаются с одинаковой силой к диску с двух сторон и на функционирование гидравлической системы и распределение сил это не влияет.

Когда водитель отпускает ручку, тормозная ручка под действием встроенной пружины возвращается на своё место, а заодно и тянет за собой жидкость по гидролинии за счёт разряжения.

Жидкость перемещается по гидролинии в обратном направлении и колодки в суппорте расходятся, т.е. нагрузка снимается.

Помимо этого, на колодках устанавливаются дополнительные пружинки, которые не дают колодкам греметь и помогают разведению. Также колодкам помогает расходиться и сила упругости. При сильном нажатии сами колодки упруго деформируются и когда нагрузка снимается «распрыгивают» обратно.

Для чего нужен расширительный бачок в этой схеме?

Бачок позволяет регулировать уровень жидкости в системе, ведь жидкостям свойственно расширяться и сужаться в зависимости от температуры. Значит, и при отсутствии бачка лишнему объему некуда будет вылиться (ведь система-то герметичная и замкнутая) и систему может заклинить в нажатом состоянии. Или наоборот — жидкости в какой-то момент может не хватить,а значит и нажать на тормозной поршень с нужным усилием не выйдет.

Кроме того, когда колодки стираются, некоторый объем дополнительной жидкости поступает из бочка в контур и не даёт ручке «проваливаться». Ведь по сути дела, когда крайние точки системы сдвигаются (т.к. высота колодок стала меньше), поршень тоже перемещается и увеличивает холостой ход ручки.

Чем отличаются гидравлические тормоза велосипеда от гидравлических тормозов автомобиля?

Правильный ответ — ничем.

Вся система функционирует аналогично. Правда у автомобиля есть два независимых контура — передний и задний.

Ещё в конструкцию добавлены вакуумный усилитель тормозов и блок ABS. И то, и другое — это удел новых автомобилей. На старых всё было, скажем так, аналоговым. Именно поэтому, например на автомобиле УАЗ «Буханка», затормозить иногда очень непросто :)…Ведь усилителя-то нет.

Вакуумный усилитель расположен сразу после педали перед главным тормозным цилиндром и увеличивает силу нажатия на поршень цилиндра. Про его конструкцию мы поговорим отдельно. Зачем он нужен? Вспомните про камаз…Конечно же, нужна достаточная сила нажатия на колодку на выходе, а то проскользнет и торможения не выйдет.

ABS или антиблокировочная система — позволяет исключить попадание одного из колёс автомобиля в юз/занос. Если её не будет, то колесо, которое пошло в занос, нарушит равномерное распределение сил между всеми тормозящими колесами. Электронный модуль, замеряя скорость каждого из колес, не дает одной оси, а то и всего автомобиля, жестко заблокироваться в случае, если одно колесо на оси при торможении скользит по льду, а второе встало на сухой асфальт. Колесо на асфальте отпускается. Благодаря этому вращающий момент не возникает и машину не крутит вокруг своей оси.

Почему гидравлика лучше?

Механические тормоза хороши всем. Кроме того, что есть несколько принципиально важных особенностей, которые и делают гидравлику более предпочтительной.

  • Тормозной тросик обычно растягивается пропорционально нажатию на ручку или педаль. Когда мы дошли до крайней точки движения колодки, системе остается не усиливать нажатие на колодки дальше, а тянуть тросик. Жидкость же несжимаемая и равномерно передает всё усилие.
  • Тормозной тросик иногда закусывает и он требует периодической смазки. Он ржавеет и теряет свойства. Требует периодической перетяжки. Гидролиния же может, разве что, протереться и потечь. Но при этом всегда сохраняется мягкая плавная работа тормозной системы.
  • При использовании механических устройств невозможно усилить нажатие на колодку.

Сила передается «как она есть». Это вполне подходит для торможения велосипеда на ровной дорожке, но когда нужно остановить 10-тонный камаз на пути под гору, то сил человека явно не хватит.

Закон Паскаля

Для усиления торможения в гидравлических тормозах мы используем закон Паскаля.

Описанная ниже логика применяется повсеместно и является основой работы всех гидравлических машин. Многотонные гидравлические прессы и гидроусилители — все они работают, опираясь на этот закон.

Его формулировка: Давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях.

Для подтверждения этого можно провести очень интересный опыт. Сделать т.н. шар Паскаля.

Шар Паскаля демонстрирует, что давление равномерно передаётся во всех направлениях.

Давление в жидкостях или газах — это величина скалярная. Получается, что давление просто есть. Как и температура на улице.

Давление во всех точках жидкости должно быть одинаковым. Именно этот принцип и используется в гидравлических машинах. Ведь все они представляют из себя замкнутую гидравлическую систему.

Теперь вспоминаем, что такое давление.

Давление — это величина, равная отношению действующей силы на единицу площади или p=F/S. Измеряется в Паскалях (Па) и имеет размерность н/м2.

Идём дальше. У нас есть закон Паскаля, сформулированный чуть выше. Имеем соотношение F/S=const.

Запишем это применительно к рассматриваемой гидравлической системе:

F1/S1=F2/S2,

где F1 и S1 — это сила приложенная к тормозной ручке и площадь главного тормозного цилиндра, а F2 и S2 — сила с которой давит цилиндр в суппорте на колодку и площадь поршня в суппорте соответственно.

Получаем коэффициент усиления, который определяется соотношением площадей.

Чем больше площадь цилиндра суппорта и чем меньше площадь главного тормозного цилиндра, тем больше сила. Это легко вывести и из приведенных соотношений.

Таким образом, гидравлические тормоза даже без вакуумного усилителя дают увеличение силы нажатия.

  • Гидравлические тормоза практически не требуют регулировки. Если система герметичная, а уровень жидкости выбран правильно, то при истирании колодок или установке новых не нужно подтягивать/отпускать тросик. Благодаря расширительному бачку уровень сам нормализуется.
  • Гидравлические тормоза всегда будут легче механических, что особенно важно для велосипедистов.

Кстати говоря, конструкций гидравлических систем может существовать очень много. Например, в суппорте может использоваться сразу несколько поршней, которые дублируют друг друга и усиливают нажатие.

Принцип усиления, который доступен нам благодаря работе закона Паскаля, применяется и в других известных механизмах, но об этом мы поговорим чуть позже.

Добавить комментарий

Ваш e-mail не будет опубликован.